Page No. B-86 of 126 Test Report No. T71352.01-01

Page No. D-1 of 20 Test Report No. T71013.01-01

ATTACHMENT D
ELECTRICAL TEST DATA

Page No. B-87 of 126 Test Report No. T71352.01-01

Page No. B-88 of 126 Test Report No. T71352.01-01

Page No. D-3 of 20 Test Report No. T71013.01-01

Customer: ES&S (page	of 2)		Temperatur		22.4°F	Start Date: 8-29-2013 Humidity: 56%		
EUT: 4500			Measureme		See Test Points Below			
Model No.: DS200			Interference		See Applied	MINOSTAN.		
Serial No.:			Frequency I	BUELLEGEN	N/A			
Test Title Electrostatic [isruption							
Test Points	Meets Limit		Applied Level	Discharge Type	Times Tested	Comments		
TP001: Vertical Coupling Plane	1	7.10	#2,4,8	Contact	10	Fach Side of BUT		
TP002 DS200 DS5 Well keyhole	1		±2,4,8	Counce	10	Engineery Log his changes		
TP003: DS200 From keyhole	1		±2, 4, 8	Contact	10	TDOOR AN TYOUL		
TP004 Metal Ballot Box From Upper Right Keybole	V		=2, 4, 1	Contact	10)			
TP005: Metal Ballot Box From Lower Right Keyhole	V		+2,4,1	Contact	(10)			
TP006: Mend Ballet Bea. Top Right-Rear Keybole	V		+2, 4, 8	Connec	10			
TPOOT: Metal Stallet Des Hight Ballet Box Door Keyhala	V		+2, 4, fi	Contact	30			
TP008: Mutal Hallet Box Above Right Bullot Deser	V		#2, 4, 8	Contact.	10			
TP609: Motal Batter Box Front Above the Austliny Sin	1		92, 4, 8	Contact	10			
TP010: Metal Bidler Box Back Upper Center	V		=2, 4, 8	Contact	10			
TP011: Metal Ballot Box Above Left Ballot Box Door	2		22,4,8	Conner	10			
TP012: Metal Hallot Box Left Hallot Box Doint Keybole	1		92,4,8	Contact	10			
17913: D5200 Modem Door Keybeile	1		±2, 4, 8	Consut	10			
TP014: DS200 Track Cover Lett Roar	0		=2, 4, 3, 15	Air	10			
TP015: DS200 Truck Cover Lata From	V		≥2,4,8,15	Air	10			
TP016: DS200 Track Cover Night Front	V		=2, 4, 8, 15	Air	10			
17017: D6700 Truck Cover Right Ricar	V		12,1,1,15	2680	- 10			
TP018: D8200 Hallot Track Front Conta	1		+2, 4, 8, 15	Air	10			
THEFO. DISJON Screen Frame Francisco Latt Ton Corner Interior	V		42, 4, 8, 15	Air	10			
Ave CV VI	00							
lotice of Anomaly:	0			Tested	By: flye	Technisism		
Vitness:				Appro	ved: Type	1 (14) Date: 08/29/201		

Page No. B-89 of 126 Test Report No. T71352.01-01

Page No. D-4 of 20 Test Report No. T71013.01-01

laboratories			DATA	SHE	EI	Start Date:	8-29-2013	
Customer: ES&S (Page	2 of 2)		Temperatur	e:	22.4F	Humidity: 5	Humidity: 56%	
EUT: 4500			Measuremen	nt Point:	See Test Points Be	low		
Model No.: DS200			Interference	Signal:	See Applied Signa	1		
Serial No.: Test Title Electrostatic Di	istuption		Frequency I	Range:	N/A			
Test Points	Meets Limit			Discharg	Times	Comment	Sec. 5	
(17.000.017.000)	Yes	No	(kV)	Type	Tested	Comment	*:	
TP920: DS200 Seroon Frante Front- face Left Top Comm Exterior	V		42, 4, 8, 15	Air	30			
TP021: DS200 Scroon France From- face Top-Span	V		±2, 4, 8, 13	.Air	10			
TP022 DS200 Screen Frame From- face Top Right Corner	V		-2, 4, 8, 15	Air	10			
TP023: D5200 Series Top Right Corner	1		+2, 4, 8, 15	Air	10			
19024: D6200 Sevent Top Kraht- Conter	1		12.4 K IF	(A)r.	30			
19925: 198200 Sarcen Top Lett- Conner	1		12, 4, 8, 15	Ase	10			
19026: ISS200 Seseen Top Latti Cutter	1		42.4.8.15	Air	10			
17037; DS200 Screen Middle Left Side	1		42, 4, 8, 15	Air	10			
19028: 18200 Screen Middle Juli- Center	1		±2.4,R,15	Air	10			
T19029: 115200 Surean Middle Right-Curter	1		#2, 4, 0, 15	Air	10			
T1ND0: DS200 Screen Middle Right Side	1		12,4,8,15	Air	10			
TP031: D6300 Screen Lower Right Corner	1		±2, 4, 8, 15	Air	10			
TP012 E6200 Screen Lower ModSc-Right TP031 DS200 Screen Lower Left	V		12.4.8.07	XABY.	10			
Come: TP034: 195200 USB Door Rear	V		43.4.4.15	Air	10			
17985 DS200 Scroon Frame Left-	1		+2, 4, 8, 15 +2, 4, 8, 15	Air	10			
face TP036: DS200 Modem DNN Ran	1		(2:4:8:18	Air-	10			
19/037, DS200 Base Cover Front Contac	V		22, 4, 8, 15	Air	10			
TP03R: DS200 Rain Cover Right	V		±2, 4, 8, 15	Air	10			
19039: DS200 Rear Cover Back	V		+2, 4, 8, 15	Air	70			
Notice of Anomaly:	0			Testec	By: Pope Inc.	Dates	08/21/201	
Witness:				Appro	ved: Lye Jack	ATT Date:	08/29/2013	

Page No. B-90 of 126 Test Report No. T71352.01-01

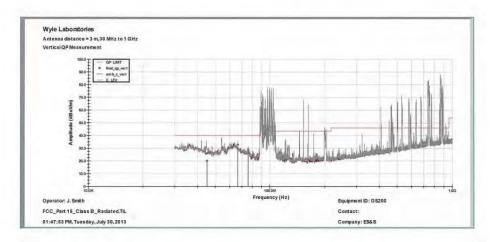
Page No. B-91 of 126 Test Report No. T71352.01-01

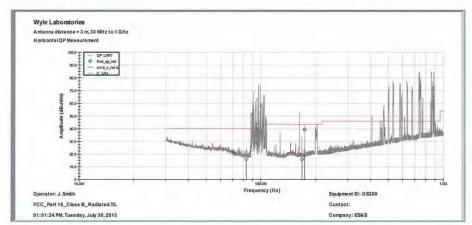
Page No. D-6 of 20 Test Report No. T71013.01-01

California Instruments Corp. Data entry mode: Absolute

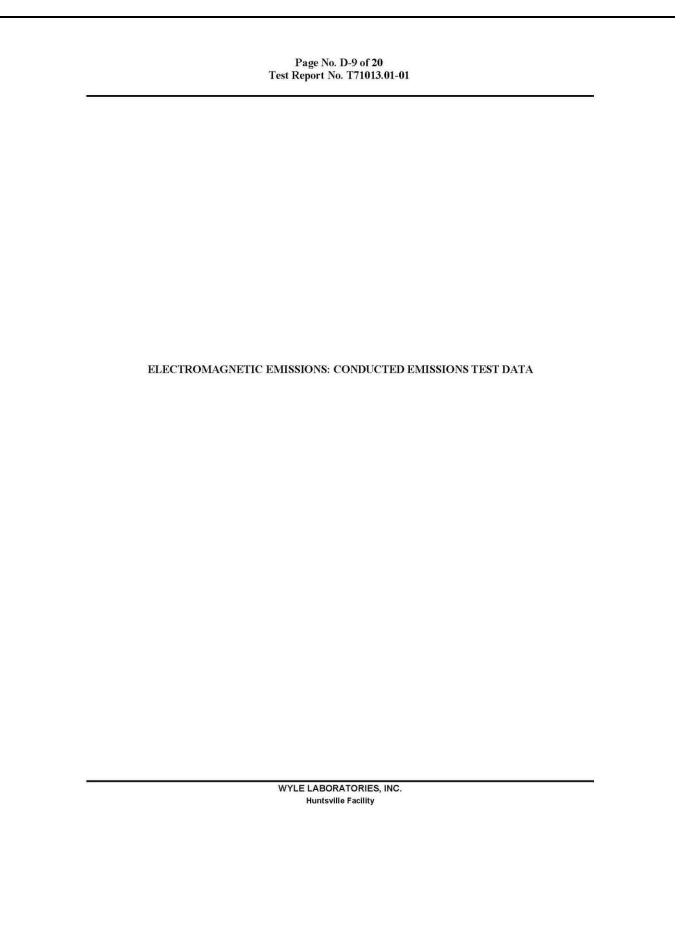
No.	Туре	Time (s)	Volt
1	V Step	60.000	120.0
2	V Step	0.020	84.0
3	V Step	60.000	120.0
4	V Step	0.100	48.0
5	V Step	60.000	120.0
6	V Step	1.000	48.0
7	V Step	60.000	120.0
8	V Step	5.000	6.0
9	V Step	60.000	120.0
10	V Step	1.000	102.0
11	V Step	60.000	120.0
12	V Step	1.000	138.0
13	V Step	60.000	120.0
14	V Step	14400.000	129.0
15	V Step	60.000	120.0
16	V Step	14400.000	105.0
17	V Step	60.000	120.0
18	Empty		***************************************

Transient List: <NEW>

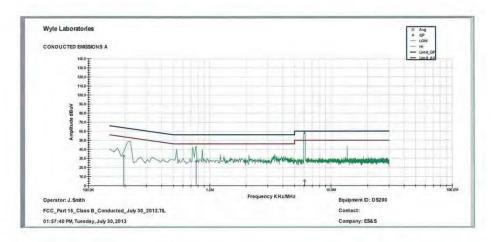

Printed on: Friday, July 26, 2013 9:50:02 AM

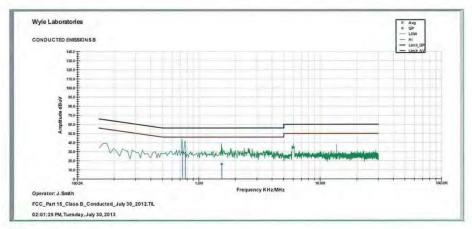

Page #1

Page No. B-92 of 126 Test Report No. T71352.01-01



Page No. D-8 of 20 Test Report No. T71013.01-01





Page No. B-94 of 126 Test Report No. T71352.01-01

Page No. D-10 of 20 Test Report No. T71013.01-01

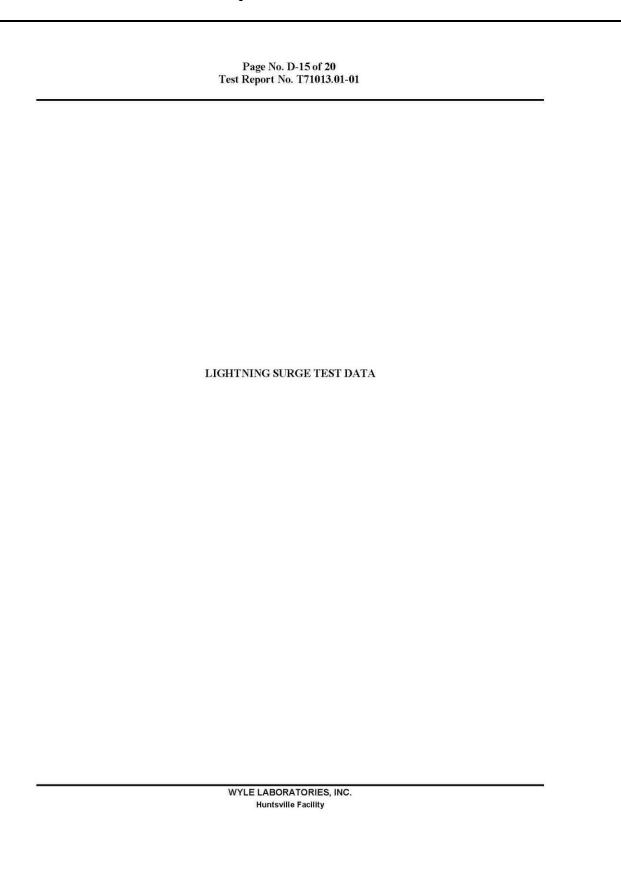
Page No. B-96 of 126 Test Report No. T71352.01-01

Page No. B-97 of 126 Test Report No. T71352.01-01

Page No. D-12 of 20 Test Report No. T71013.01-01

Customer:		ESA		Temperature 21.7° C		Humidity:	49,9%	
EUT:		DS20		mperature: easurement Point:		EUT @ All Four Sides	49,9%	
Model No.:		DS20		terference Signal:		1Khz @ 80% AM		
Serial No.:	D	S03133	2000	equency Range:		80Mkg to 1Ghz		
est Title EN	61000-	4-3 (Ele	ciromagnetic Susce	100000000000000000000000000000000000000				
Test Frequency	Threshold		Susceptibility Threshold Leve	Maximum Signi Applied	al .	Comments		
)kHz (X)MHz ()GHz	Yes	No	()A ()V ()k ()dBµA ()dBµ)kV (X)V/m ()Vrms BµV ()dBµV/m ()dBpT		Comments		
80	X		>10	10		Vertical and Horizont	nf .	
1	4		1	1		1		
1,000	X		>10	10	-	Vertical and Horizont	al	
							~1	
tice of Anumaly:				Tested Approx	ed: Rend Class	t Engineer	8 (23/10 08/23/201 of_	

Page No. B-98 of 126 Test Report No. T71352.01-01

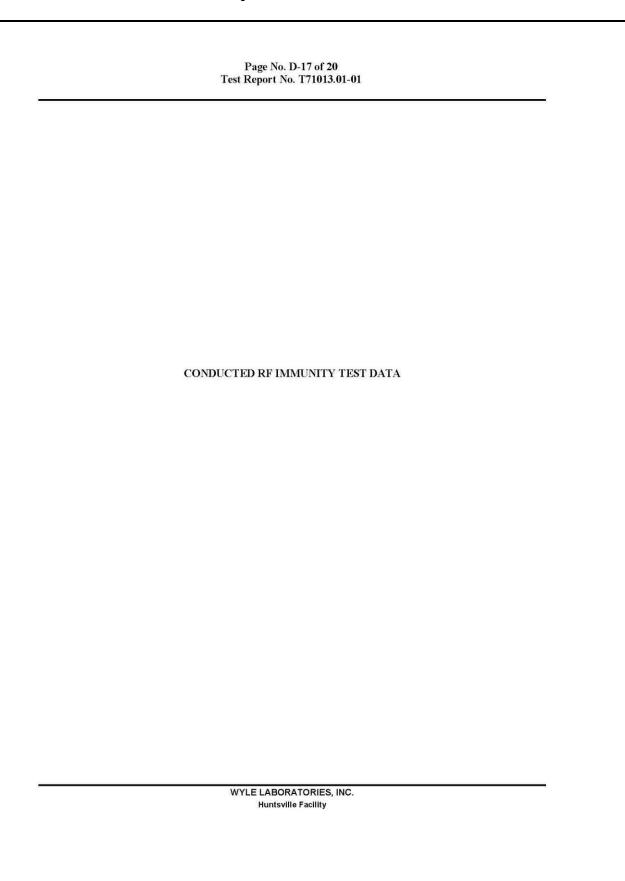

Page No. D-13 of 20 Test Report No. T71013.01-01 ELECTRICAL FAST TRANSIENT TEST DATA WYLE LABORATORIES, INC. **Huntsville Facility**

Page No. B-99 of 126 Test Report No. T71352.01-01

Page No. D-14 of 20 Test Report No. T71013.01-01

Established in		ESA	e			NA COLUMN TO SERVICE	20.20		
Customer:	_	DS20		Transferment Came			Humidity: Comments Below	50.1%	
Model No.:		DS20	d				Test Signal Applied @ 5/50nS		
Serial No.:	b	5031338			sency Range:		See Test Frequencies Below		
est Title EN	61000	4-4 (Ele	etrical Fast Transic						
Test Frequency	Meets	Limit	Susceptibility Threshold Leve	1	Maximum Signal Applied				
(X)kHz ()MHz ()GHz	Ves	No	()A ()V (X	()A ()V (X)kV ()V/m ()Vru)dBµA ()dBµV ()dBµV/m ()d			Comments		
.060	X		>1		1		Line to Neutral		
.060	1		4		1		Line to Ground		
otice of Anomaly: itness:					Tested By;	Techni Ly Allah Project L	Date:	7/3/1/13 67/24/2013	

Page No. B-100 of 126 Test Report No. T71352.01-01

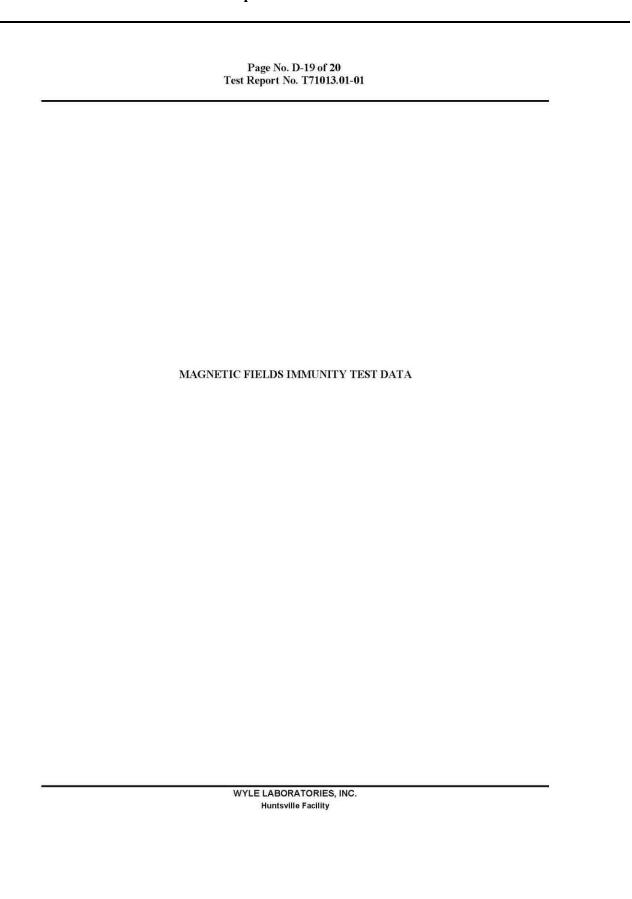


Page No. B-101 of 126 Test Report No. T71352.01-01

Page No. D-16 of 20 Test Report No. T71013.01-01

Customer:	ES&S DS290		10	Temperature: 21.9° C			53.6%	
EUT: Model No.:		DS20	10		Comments Below ral Applied @ 1.2/	Enus		
Serial No.:	n	803133	EARING	erference Signal: quency Range:		st Frequencies Bel		
est Title EN	61000	4-5 (Lig	ditning Surge Test)					
Test Frequency	Meets	Limit	Susceptibility Threshold Level	Maximum Signal Applied				
(X)kHz ()MHz ()GHz	Yes	No	()A ()V (X)I ()dВµА ()dВµV	(V ()V/m ()Vrms ()dBµV/m ()dBpT	Comments			
-060	Х		≥.5	.5	Line to Ne	utral @ 0°, 90°, 180	°, and 270°	
.060	+		4	1	Line to Gro	mind @ 0", 90", 180	", and 270"	
.060	х		>5	.5	Neutral to Ground @ 0°, 90°, 180°, and 270°			
.060	х		>1	1	Line to Ne	atral (d) 0°, 90°, 180	", and 270°	
.060	4		1	4	Line to Ground @ 0°, 90°, 180°, and 270°			
.060	х		31	1	10000000000	Neutral to Ground @ 0", 90", 180", and 270		
.060	x		>2	2	Line to Neutral @ 0°, 90°, 180°, and 270°			
.060	4		4	1	Line to Ground @ 0°, 90°, 180°, and 270°			
,060	x		>2	.2		round @ 0°, 90°, 18		
tice of Anomaly: itness: Regts A	Chy		1 12	Tested By	Lysn J. Cul. Project En	Date:	07/22/ 07/22/2013	

Page No. B-102 of 126 Test Report No. T71352.01-01



Page No. B-103 of 126 Test Report No. T71352.01-01

Page No. D-18 of 20 Test Report No. T71013.01-01

Inbo	matorie	s		TA SHEET		Start Date:	29 Jul 13
Customer:	ES&S DS200		tem	perature;	22.4° C	Humidity:	44.5%
EUT:	-	DS20	n Near	surement Point:		Comments Below	
Model No.: Serial No.:	1994		Inter	ference Signal:		Khz @ 80% AM 50Khz to 80Mhz	
	61000	4-6 (Co	nducted RF Immunity)	uency Range:		SOKIIZ (O SOMIZ	
Test Frequency	Meets	Limit	Susceptibility Threshold Level	Maximum Signal Applied	_		
()kHz (X)MHz ()GHz	Yes	No	()A (X)V ()kV	()V/m ()Vrms ()dBµV/m ()dBpT		Comments	
.150	X		>10	10		AC Input	
4	1		1	4		1	
						AC Input	
utice of Anomaly: //itness:/	V.J.A.	ø		Tested By:	Technic	Date:	07/29/1 07/29/201 1 ut 1

Page No. B-104 of 126 Test Report No. T71352.01-01

Page No. B-105 of 126 Test Report No. T71352.01-01

Page No. D-20 of 20 Test Report No. T71013.01-01

		ESAS			22.1° C	D	in mar	
Customer:	DS200			mperature:	William S.	Humidity: Comments Below	49.9%	
Model No.z	No.2 DS200		(91	Measurement Point: Interference Signal: 69 Frequency Range:		a Period of 5 Min	utes	
Serial No.:			Salar de la companya della companya			est Frequencies Bel	1000	
est Title EN	61000	4-8 (Ma	enetic Field Immuni					
				M.00				
Test Frequency	Meet	Limit	Susceptibility Threshold Level	Muximum Signal Applied		Comments		
(X)kHz ()MHz ()GHz	Yes	No	(X)A ()V () ()dBµA ()dBµN	kV ()V/m ()Vrms V ()dBμV/m ()dBpT		Comments		
.060	X		>30 A/m	30 A/m	Et	JT on X, Y, and Z /	\xis	
otice of Anomaly:		0		7 (MACIQUE A) 440	1	Date	07/09/	
itness:		LA		Tested By	Lo Jechy	icium		
Hacss:	10	+11		Approved	Project E	Date Date	07/28/201	